A Tensor Version of the Quantum Wielandt Theorem

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A More General Version of the Costa Theorem

In accordance with the Costa theorem, the interference which is independent of the channel input and known non-causally at the transmitter, does not affect the capacity of the Gaussian channel. In some applications, the known interference depends on the input and hence has some information. In this paper, we study the channel with input dependent interference and prove a capacity theorem that n...

متن کامل

A FUZZY VERSION OF HAHN-BANACH EXTENSION THEOREM

In this paper, a fuzzy version of the analytic form of Hahn-Banachextension theorem is given. As application, the Hahn-Banach theorem for$r$-fuzzy bounded linear functionals on $r$-fuzzy normedlinear spaces is obtained.

متن کامل

The Lidskii-Mirsky-Wielandt theorem - additive and multiplicative versions

We use a simple matrix splitting technique to give an elementary new proof of the Lidskii-Mirsky-Wielandt Theorem and to obtain a multiplicative analog of the Lidskii-Mirsky-Wielandt Theorem, which we argue is the fundamental bound in the study of relative perturbation theory for eigenvalues of Hermitian matrices and singular values of general matrices. We apply our bound to obtain numerous bou...

متن کامل

Tensor Universality, Quantum Information Flow, Coecke’s Theorem, and Generalizations

We show that Coecke’s compositionality theorem for quantum information flow follows by the universal property of tensor products from the case in which all relevant states are totally disentangled, for which the proof is almost trivial. With the same technique we deduce a PROP structure behind general multipartite quantum information processing and show that all such are equivalent to a canonic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications

سال: 2019

ISSN: 0895-4798,1095-7162

DOI: 10.1137/18m1227664